Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Microchemical Journal ; 186:N.PAG-N.PAG, 2023.
Article in English | Academic Search Complete | ID: covidwho-2235237

ABSTRACT

[Display omitted] • Immunohistochemistry with magnetic core nanoparticles to isolate viruses. • The use of MALDI-MS for rapid virus detection is explained in detail. • The use of ESI-MS/MS to pinpoint host-patient crosstalk is explained in detail. • The absolute quantitative MS is explained for large-scale protein quantitation. The capabilities of bioanalytical mass spectrometry to (i) detect and differentiate viruses at the peptide level whilst maintaining high sample throughput and (ii) to provide diagnosis and prognosis for infected patients are presented as a tutorial in this work to aid analytical chemists and physicians to gain insights into the possibilities offered by current high-resolution mass spectrometry technology and bioinformatics. From (i) sampling to sample treatment;(ii) Matrix-Assisted Laser Desorption Ionization- to Electrospray Ionization -based mass spectrometry;and (iii) from clustering to peptide sequencing;a detailed step-by-step guide is provided and exemplified using SARS-CoV-2 Spike Y839 variant and the variant of concern SARS-CoV-2 Alpha (B.1.1.7 lineage), Influenza B, and Influenza A subtypes AH1N1pdm09 and AH3N2. [ FROM AUTHOR]

2.
Microchemical Journal ; : 108323, 2022.
Article in English | ScienceDirect | ID: covidwho-2159561

ABSTRACT

The capabilities of bioanalytical mass spectrometry to (i) detect and differentiate viruses at the peptide level whilst maintaining high sample throughput and (ii) to provide diagnosis and prognosis for infected patients are presented as a tutorial in this work to aid analytical chemists and physicians to gain insights into the possibilities offered by current high-resolution mass spectrometry technology and bioinformatics. From (i) sampling to sample treatment;(ii) Matrix-Assisted Laser Desorption Ionization- to Electrospray Ionization -based mass spectrometry;and (iii) from clustering to peptide sequencing;a detailed step-by-step guide is provided and exemplified using SARS-CoV-2 Spike Y839 variant and the variant of concern SARS-CoV-2 Alpha (B.1.1.7 lineage), Influenza B, and Influenza A subtypes AH1N1pdm09 and AH3N2.

3.
Pharmaceutics ; 14(4)2022 Apr 17.
Article in English | MEDLINE | ID: covidwho-1792573

ABSTRACT

The development of effective antiviral drugs against SARS-CoV-2 is urgently needed and a global health priority. In light of the initial data regarding the repurposing of hydroxychloroquine (HCQ) to tackle this coronavirus, herein we present a quantitative synthesis and spectroscopic and thermal characterization of seven HCQ room temperature ionic liquids (HCQ-ILs) obtained by direct protonation of the base with two equivalents of organic sulfonic, sulfuric and carboxylic acids of different polarities. Two non-toxic and hydrophilic HCQ-ILs, in particular, [HCQH2][C1SO3]2 and [HCQH2][GlcCOO]2, decreased the virus-induced cytopathic effect by two-fold in comparison with the original drug, [HCQH2][SO4]. Despite there being no significant differences in viral RNA production between the three compounds, progeny virus production was significantly affected (p < 0.05) by [HCQH2][GlcCOO]2. Overall, the data suggest that the in vitro antiviral activities of the HCQ-ILs are most likely the result of specific intra- and intermolecular interactions and not so much related with their hydrophilic or lipophilic character. This work paves the way for the development of future novel ionic formulations of hydroxychloroquine with enhanced physicochemical properties.

4.
Comput Struct Biotechnol J ; 18: 2117-2131, 2020.
Article in English | MEDLINE | ID: covidwho-723392

ABSTRACT

There are no approved target therapeutics against SARS-CoV-2 or other beta-CoVs. The beta-CoV Spike protein is a promising target considering the critical role in viral infection and pathogenesis and its surface exposed features. We performed a structure-based strategy targeting highly conserved druggable regions resulting from a comprehensive large-scale sequence analysis and structural characterization of Spike domains across SARSr- and MERSr-CoVs. We have disclosed 28 main consensus druggable pockets within the Spike. The RBD and SD1 (S1 subunit); and the CR, HR1 and CH (S2 subunit) represent the most promising conserved druggable regions. Additionally, we have identified 181 new potential hot spot residues for the hSARSr-CoVs and 72 new hot spot residues for the SARSr- and MERSr-CoVs, which have not been described before in the literature. These sites/residues exhibit advantageous structural features for targeted molecular and pharmacological modulation. This study establishes the Spike as a promising anti-CoV target using an approach with a potential higher resilience to resistance development and directed to a broad spectrum of Beta-CoVs, including the new SARS-CoV-2 responsible for COVID-19. This research also provides a structure-based rationale for the design and discovery of chemical inhibitors, antibodies or other therapeutic modalities successfully targeting the Beta-CoV Spike protein.

SELECTION OF CITATIONS
SEARCH DETAIL